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Abstract 
   In this paper, unsteady Couette flow of a Bingham fluid in contact with a Newtonian fluid in a channel 
bounded by parallel plates is investigated. The flow region is divided in to lower and upper regions. The lower and 
upper regions are filled with Bingham and Jeffrey fluids respectively. The velocity fields in the lower and upper 
regions are determined and the results are discussed through graphs.  
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     Introduction 
The study of two fluid flows in a channel is 

important in connection with plastics manufacture 
processing of food stuffs and movement of biological 
fluids in physiological systems. Biofluids such as 
blood cannot be considered as single component 
systems. In view of this, blood is modeled by many 
researchers either as a combination of two immiscible 
Newtonian fluids or as a combination of two non-
Newtonian fluids or Newtonian and non Newtonian 
fluids. Further Bugliarello and Sevillo [1] and some 
others confirmed through experiments that blood has 
to be treated as an yield stress fluid. Among the 
several yield stress fluid models available, Bingham 
model is a simple model containing the effect of yield 
stress and this reduces to classical Newtonian fluid 
model in the absence of yield stress. In view of the 
complex behavior of blood in the circulatory system, 
it is necessary to consider the biofluid blood as a two 
layered fluid. Therefore the study of Bingham fluid in 
contact with a Newtonian fluid becomes important 
and it has potential applications in the design of 
pumps used in engineering and medicine.  
 Bird et al. [2] investigated the Bingham fluid 
in a rigid circular tube. Rathy [3] studied the flow of 
a Bingham fluid in a channel and in an annulus with 
impermeable walls. Sai [4] investigated the unsteady 
flow of a viscous incompressible fluid over a 
naturally permeable bed. The unsteady flow of two 
immiscible conducting fluids between two parallel 
plates is studied by Mitra [5]. Vajravelu et al. [6] 
made a study on the Bingham fluid flow in a circular 

tube with permeable wall. The Bingham fluid flow 
between two permeable beds is discussed by 
Govardhan et al. [7]. Ravana et al [8] studied the free 
surface flow of a Bingham fluid in an in claimed 
channel over a permeable bed. The problem of 
rotational motion of a Bingham fluid in the gap 
between two coaxial cylinders, the outer one being at 
rest and the inner one moving at a given angular 
velocity, is solved by Comparini [9]. Narahari et al. 
[10] studied the unsteady flow of a Bingham fluid 
between two permeable beds. Sankara Reddy et al. 
[11] made a detailed study on the Bingham fluid flow 
in an inclined channel bounded by two permeable 
beds. Hayat et al. [12] discussed the unsteady Couette 
flow of a second grade fluid in a porous layer. 
Sokrates Tsangaris et al. [13] studied Couette flow of 
a Bingham plastic in a channel with equally porous 
parallel walls. 
 The unsteady flow of a viscous 
incompressible fluid is of considerable interest in a 
biomechanics and medicine. Sir Isaac Newton 
showed that stress and the rate of strain are linearly 
related for many familiar fluids such as water and air. 
These Newtonian fluids are modeled through a 
coefficient called viscosity, which depends on the 
specific fluid. However, some of the other materials, 
such as emulsions and slurries and some visco-elastic 
materials (e.g. blood, some polymers), have more 
complicated non-Newtonian stress-strain 
relationships. These materials include sticky liquids 
such as latex, honey and lubricants which are studied 
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in the sub-discipline of rheology. Non-Newtonian 
models like Bingham model, Hershel-Bulkley model, 
Casson model. Jeffery models etc. are proposed by 
researchers to describe the flow behavior of the 
above materials. In view of this it will be interesting 
to study the flow of an yield stress fluid in contact 
with a Newtonian fluid.  

In this paper, unsteady Couette flow of a 
Bingham fluid in contact with a Newtonian fluid in a 
channel bounded by parallel plates is investigated. 
The flow region is divided in to lower and upper 
regions. The lower and upper regions are filled with 
Bingham and Jeffrey fluids respectively. The velocity 
fields in the two regions are determined and the 
results are discussed through graphs.  

 
Mathematical Formulation and Solution 

Consider the unsteady Couette flow of two 
immiscible fluids between two parallel plates (see 
Figure1). The lower plate is at rest and the upper 
plate is moving constant velocity U. X-axis is taken 
along the lower stationary plate and Y-axis is taken 
perpendicular to X-axis. The flow region between the 
plates is divided into two regions. The region 
between y=0 and y=h1 consists of Bingham fluid and 
the region between y=h1 and y=h consists of Jeffrey 
fluid. Since Bingham fluid is an yield stress fluid, the 

region 10 y h≤ ≤  is further divided into regions 

1,0 y y≤ ≤ 1 2y y y≤ ≤ and 2 .y y h≤ ≤ The 

region 1 2y y y≤ ≤ represents the plug flow region. 

The following assumptions are made in the analysis 
of the problem: 

a) The flow in the x-direction is driven by an 
exponentially time dependent pressure 
gradient. 

b) The flow is unsteady and fully developed so 
that all physical characteristics except 
pressure are functions of ‘y’ and ‘t’ only. 

c) The velocity field and the pressure 
distribution vary exponentially with time. 

Fig 1: Physical Model 
In view of the above assumptions, the basic equations 
reduce to 

Lower Region I ( )10 y h≤ ≤  
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The boundary conditions are given by 
 T = T1   at y = 0  
     (4a) 
 u1 = 0   at y = 0  
     (4b) 
 u1 (y1) = u2 (y2)    
     (4c) 
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 u2 = u3    at y = h1  
                (4e) 

 2 2 3
1 0

1

du du

dy 1 dy

µµ − σ =
+ λ

 at y = h1 

    (4f) 
 u3 = u0    at y = h 
     (4g) 
where u1, u2, u3 are velocity components in the Zones 
I, II, III respectively, p is the pressure, T is the shear 
stress and T1 is the shear stress at y=0. 
In view of assumption (c), it follows that  

 
2tp
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 ( ) ( ) 2t
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2t
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2t
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                 (5) 
Using (5), the governing equations (1) to (3) become, 
Lower Region I 
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      (8) 
The boundary conditions are given by 
 τ = τ1   at y = 0  
    (9a) 
 s1 = 0   at y = 0  
    (9b) 

 s1(y1) = s2 (y2)    
              (9c) 
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ds ds
0

dy dy= =

 
= = 

 
  

            (9d) 
 s2 = s3    at y = h1  
            (9e) 

 2 2 3
1 0

1

ds ds

dy 1 dy

µµ − τ =
+ λ

 at y = h1 

          (9f) 
 s3 = U    at y = h 
            (9g) 
It is convenient to introduce the following non-
dimensional quantities: 

y
y
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= , 1
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h

h
h

= , i
i

p

s
s

u
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1 p

h

u
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µ
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h p
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µ
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In view of the above non-dimensional quantities, the 
basic equations (6) to (8) and the boundary 
conditions (9a) to (9g) can be expressed in non-
dimensional form, dropping bars, as: 

Region I: ( 10 y h≤ ≤ ) 
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Plug flow region 

Here, we take 0τ = τ  for 1 2y y y≤ ≤  

Zone II: 2 1y y h≤ ≤  
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     (15) 
The non-dimensional boundary conditions are  
 τ = τ1   at y = 0  
   
 s1 = 0   at y = 0  
   
 s1(y1) = s2 (y2)    
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 s2 = s3    at y = h1  
    (16) 
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 s3 = C0   at y = 1,  

 where 0
p

U
c

u
=  

 

Solution of the Problem 
Solving (11) to (15), subject to the conditions (16), we obtain the velocity fields as: 
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The plug velocity is given by 

( )p 1 n 1 12

1
s M B sinh My cosh My

M
=  τ − −                                            (20) 

and the plug range limits y1 and y2 can be obtained by solving the equations 

 ( )2 2My My
3 4 1 n 1 12

1
c e c e M B cosh My sinh My

M
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 ( )2 2My My
3 4 1 n 1 12

1
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M
−+ =  τ − −                (21) 

 
Results and Discussions 
 The unsteady Couette flow of a Jeffrey fluid in contact with Bingham fluid is investigated. Here we 
calculate the velocities for the Jeffrey fluid and Bingham fluid in the channel. We find some interesting results 
observed through graphs. 
 From Fig. 2 we observe that as the Jeffrey parameter increases, the velocity of the Jeffrey fluid is 
decreasing in the upper region and the increase in the Jeffrey parameter will not effect the velocity of the Bingham 
fluid in the lower region.  The variation of velocity with y for different Couette numbers is shown in Fig. 3. Here we 
observe that as the Couette number increases, the velocity of the fluid increases. From Fig. 4 we observe that as the 
viscosity ratio increases the velocity of the Jeffrey fluid region is increasing and the increase in the viscosity ratio 
will not affect the velocity of the Bingham fluid i.e. the effect of viscosity ratio on the velocity of the overall fluid 
comparatively less.  It is noticed from Fig. 5 that as the Bingham number increases the velocity of the fluid 
increases.  
 The interesting phenomenon we discuss here is the plug velocity. From Figs. 6 and 7 we observe that the 
velocity increases with the increase in the Bingham number and Couette number.  We notice from Fig. 8 that as the 
height of the interface increases the velocity of the fluid is the plug region increases. As the parameter M increases, 
the plug velocity is decreasing, which is shown in Fig. 9. 

 

 

 

 
Fig 2: Variation of velocity with y for  different values 

of the jeffrey parameter. 
Fig 3:  Variation of velocity with y for different 

values of the Couette Number. 
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Fig 4:  Variation of velocity with y for different 

values of the Viscosity ratio. 
Fig 5:  Variation of velocity with y for 

different values of the Bingham Number. 
 

 

 

 
Fig 6:  Variation of Plug velocity with y for 

different values of the Couette  Number. 
Fig 7:  Variation of Plug velocity with y for 
different values of the bingham Number. 

 

 

 

 
Fig 8:  Variation of Plug velocity with y for 

different h1 (height of the interface). 
Fig 9:  Variation of Plug velocity with y for different 

values of the M. 
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